\(\int \frac {(e \sec (c+d x))^{9/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx\) [430]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 30, antiderivative size = 411 \[ \int \frac {(e \sec (c+d x))^{9/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {5 i e^{9/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} a^{5/2} d}+\frac {5 i e^{9/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} a^{5/2} d}+\frac {5 i e^{9/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{2 \sqrt {2} a^{5/2} d}-\frac {5 i e^{9/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{2 \sqrt {2} a^{5/2} d}+\frac {4 i e^2 (e \sec (c+d x))^{5/2}}{a d (a+i a \tan (c+d x))^{3/2}}+\frac {5 i e^4 \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}}{a^3 d} \]

[Out]

-5/2*I*e^(9/2)*arctan(1-2^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))/a^(5/2)/d*2^(1/
2)+5/2*I*e^(9/2)*arctan(1+2^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))/a^(5/2)/d*2^(
1/2)+5/4*I*e^(9/2)*ln(a-2^(1/2)*a^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2)+cos(d*x+c)*(a+I*
a*tan(d*x+c)))/a^(5/2)/d*2^(1/2)-5/4*I*e^(9/2)*ln(a+2^(1/2)*a^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*
x+c))^(1/2)+cos(d*x+c)*(a+I*a*tan(d*x+c)))/a^(5/2)/d*2^(1/2)+5*I*e^4*(e*sec(d*x+c))^(1/2)*(a+I*a*tan(d*x+c))^(
1/2)/a^3/d+4*I*e^2*(e*sec(d*x+c))^(5/2)/a/d/(a+I*a*tan(d*x+c))^(3/2)

Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 411, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {3581, 3582, 3576, 303, 1176, 631, 210, 1179, 642} \[ \int \frac {(e \sec (c+d x))^{9/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {5 i e^{9/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} a^{5/2} d}+\frac {5 i e^{9/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} a^{5/2} d}+\frac {5 i e^{9/2} \log \left (-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{2 \sqrt {2} a^{5/2} d}-\frac {5 i e^{9/2} \log \left (\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{2 \sqrt {2} a^{5/2} d}+\frac {5 i e^4 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a^3 d}+\frac {4 i e^2 (e \sec (c+d x))^{5/2}}{a d (a+i a \tan (c+d x))^{3/2}} \]

[In]

Int[(e*Sec[c + d*x])^(9/2)/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((-5*I)*e^(9/2)*ArcTan[1 - (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])])/(Sqrt
[2]*a^(5/2)*d) + ((5*I)*e^(9/2)*ArcTan[1 + (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c
+ d*x]])])/(Sqrt[2]*a^(5/2)*d) + (((5*I)/2)*e^(9/2)*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]
])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a + I*a*Tan[c + d*x])])/(Sqrt[2]*a^(5/2)*d) - (((5*I)/2)*e^(9/2)*Log[a
 + (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a + I*a*Tan[c + d
*x])])/(Sqrt[2]*a^(5/2)*d) + ((4*I)*e^2*(e*Sec[c + d*x])^(5/2))/(a*d*(a + I*a*Tan[c + d*x])^(3/2)) + ((5*I)*e^
4*Sqrt[e*Sec[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(a^3*d)

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 3576

Int[Sqrt[(d_.)*sec[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-4*b*(d^
2/f), Subst[Int[x^2/(a^2 + d^2*x^4), x], x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]], x] /; FreeQ[{a, b,
 d, e, f}, x] && EqQ[a^2 + b^2, 0]

Rule 3581

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*d^2*
(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + f*x])^(n + 1)/(b*f*(m + 2*n))), x] - Dist[d^2*((m - 2)/(b^2*(m + 2*n)
)), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a
^2 + b^2, 0] && LtQ[n, -1] && ((ILtQ[n/2, 0] && IGtQ[m - 1/2, 0]) || EqQ[n, -2] || IGtQ[m + n, 0] || (Integers
Q[n, m + 1/2] && GtQ[2*m + n + 1, 0])) && IntegerQ[2*m]

Rule 3582

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[d^2*(
d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + f*x])^(n + 1)/(b*f*(m + n - 1))), x] + Dist[d^2*((m - 2)/(a*(m + n - 1
))), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2
 + b^2, 0] && LtQ[n, 0] && GtQ[m, 1] &&  !ILtQ[m + n, 0] && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]

Rubi steps \begin{align*} \text {integral}& = \frac {4 i e^2 (e \sec (c+d x))^{5/2}}{a d (a+i a \tan (c+d x))^{3/2}}-\frac {\left (5 e^2\right ) \int \frac {(e \sec (c+d x))^{5/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx}{a^2} \\ & = \frac {4 i e^2 (e \sec (c+d x))^{5/2}}{a d (a+i a \tan (c+d x))^{3/2}}+\frac {5 i e^4 \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}}{a^3 d}-\frac {\left (5 e^4\right ) \int \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)} \, dx}{2 a^3} \\ & = \frac {4 i e^2 (e \sec (c+d x))^{5/2}}{a d (a+i a \tan (c+d x))^{3/2}}+\frac {5 i e^4 \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}}{a^3 d}+\frac {\left (10 i e^6\right ) \text {Subst}\left (\int \frac {x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{a^2 d} \\ & = \frac {4 i e^2 (e \sec (c+d x))^{5/2}}{a d (a+i a \tan (c+d x))^{3/2}}+\frac {5 i e^4 \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}}{a^3 d}-\frac {\left (5 i e^5\right ) \text {Subst}\left (\int \frac {a-e x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{a^2 d}+\frac {\left (5 i e^5\right ) \text {Subst}\left (\int \frac {a+e x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{a^2 d} \\ & = \frac {4 i e^2 (e \sec (c+d x))^{5/2}}{a d (a+i a \tan (c+d x))^{3/2}}+\frac {5 i e^4 \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}}{a^3 d}+\frac {\left (5 i e^4\right ) \text {Subst}\left (\int \frac {1}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}+x^2} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{2 a^2 d}+\frac {\left (5 i e^4\right ) \text {Subst}\left (\int \frac {1}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}+x^2} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{2 a^2 d}+\frac {\left (5 i e^{9/2}\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {a}}{\sqrt {e}}+2 x}{-\frac {a}{e}-\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}-x^2} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{2 \sqrt {2} a^{5/2} d}+\frac {\left (5 i e^{9/2}\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {a}}{\sqrt {e}}-2 x}{-\frac {a}{e}+\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}-x^2} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{2 \sqrt {2} a^{5/2} d} \\ & = \frac {5 i e^{9/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{2 \sqrt {2} a^{5/2} d}-\frac {5 i e^{9/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{2 \sqrt {2} a^{5/2} d}+\frac {4 i e^2 (e \sec (c+d x))^{5/2}}{a d (a+i a \tan (c+d x))^{3/2}}+\frac {5 i e^4 \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}}{a^3 d}+\frac {\left (5 i e^{9/2}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} a^{5/2} d}-\frac {\left (5 i e^{9/2}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} a^{5/2} d} \\ & = -\frac {5 i e^{9/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} a^{5/2} d}+\frac {5 i e^{9/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} a^{5/2} d}+\frac {5 i e^{9/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{2 \sqrt {2} a^{5/2} d}-\frac {5 i e^{9/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{2 \sqrt {2} a^{5/2} d}+\frac {4 i e^2 (e \sec (c+d x))^{5/2}}{a d (a+i a \tan (c+d x))^{3/2}}+\frac {5 i e^4 \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}}{a^3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 5.50 (sec) , antiderivative size = 370, normalized size of antiderivative = 0.90 \[ \int \frac {(e \sec (c+d x))^{9/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {e^2 (e \sec (c+d x))^{5/2} (\cos (d x)+i \sin (d x))^3 \left (\cos (d x) (8 i \cos (2 c)-8 \sin (2 c))+\sec (c+d x) (i \cos (3 c)-\sin (3 c))+8 (\cos (2 c)+i \sin (2 c)) \sin (d x)+\frac {5 \left (\text {arctanh}\left (\frac {\sqrt {1-i \cos (c)+\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}{\sqrt {-1-i \cos (c)-\sin (c)} \sqrt {i+\tan \left (\frac {d x}{2}\right )}}\right ) \sqrt {-1-i \cos (c)-\sin (c)} \sqrt {1+i \cos (c)-\sin (c)}-\text {arctanh}\left (\frac {\sqrt {1+i \cos (c)-\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}{\sqrt {-1+i \cos (c)+\sin (c)} \sqrt {i+\tan \left (\frac {d x}{2}\right )}}\right ) \sqrt {1-i \cos (c)+\sin (c)} \sqrt {-1+i \cos (c)+\sin (c)}\right ) (\cos (3 c)+i \sin (3 c)) \sqrt {i+\tan \left (\frac {d x}{2}\right )}}{\sqrt {1+\cos (2 c)+i \sin (2 c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}\right )}{d (a+i a \tan (c+d x))^{5/2}} \]

[In]

Integrate[(e*Sec[c + d*x])^(9/2)/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(e^2*(e*Sec[c + d*x])^(5/2)*(Cos[d*x] + I*Sin[d*x])^3*(Cos[d*x]*((8*I)*Cos[2*c] - 8*Sin[2*c]) + Sec[c + d*x]*(
I*Cos[3*c] - Sin[3*c]) + 8*(Cos[2*c] + I*Sin[2*c])*Sin[d*x] + (5*(ArcTanh[(Sqrt[1 - I*Cos[c] + Sin[c]]*Sqrt[I
- Tan[(d*x)/2]])/(Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt[1 +
I*Cos[c] - Sin[c]] - ArcTanh[(Sqrt[1 + I*Cos[c] - Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-1 + I*Cos[c] + Sin[c]
]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[1 - I*Cos[c] + Sin[c]]*Sqrt[-1 + I*Cos[c] + Sin[c]])*(Cos[3*c] + I*Sin[3*c])*S
qrt[I + Tan[(d*x)/2]])/(Sqrt[1 + Cos[2*c] + I*Sin[2*c]]*Sqrt[I - Tan[(d*x)/2]])))/(d*(a + I*a*Tan[c + d*x])^(5
/2))

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1611 vs. \(2 (321 ) = 642\).

Time = 15.10 (sec) , antiderivative size = 1612, normalized size of antiderivative = 3.92

method result size
default \(\text {Expression too large to display}\) \(1612\)

[In]

int((e*sec(d*x+c))^(9/2)/(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/4*I/d*(e*sec(d*x+c))^(1/2)*e^4/(tan(d*x+c)-I)^2/a^2/(a*(1+I*tan(d*x+c)))^(1/2)/(1/(cos(d*x+c)+1))^(1/2)/(co
s(d*x+c)+1)*(-20*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)+80*
(1/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)+10*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1)
)^(1/2))+20*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)-20*sin(
d*x+c)*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-10*arctanh(1/2*(cos(d*x
+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-4*I*tan(d*x+c)*sec(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)-
4*I*tan(d*x+c)*sec(d*x+c)^2*(1/(cos(d*x+c)+1))^(1/2)-5*I*tan(d*x+c)*sec(d*x+c)*arctanh(1/2*(-cos(d*x+c)+sin(d*
x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))+5*I*tan(d*x+c)*sec(d*x+c)*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+
1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-10*tan(d*x+c)*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1
)/(1/(cos(d*x+c)+1))^(1/2))+15*sec(d*x+c)*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+
1))^(1/2))+10*I*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))+10*I*arctanh(1
/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-5*sec(d*x+c)^2*arctanh(1/2*(-cos(d*x+c)+
sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))+5*sec(d*x+c)^2*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(c
os(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-44*sec(d*x+c)^2*(1/(cos(d*x+c)+1))^(1/2)+80*(1/(cos(d*x+c)+1))^(1/2)-20
*I*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)-15*I*sec(d*x+c)*a
rctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-15*I*sec(d*x+c)*arctanh(1/2*(co
s(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))+5*tan(d*x+c)*sec(d*x+c)*arctanh(1/2*(-cos(d*x+
c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))+5*tan(d*x+c)*sec(d*x+c)*arctanh(1/2*(cos(d*x+c)+sin(
d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))+10*I*tan(d*x+c)*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos
(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-10*I*tan(d*x+c)*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(
cos(d*x+c)+1))^(1/2))+80*I*tan(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)-5*I*sec(d*x+c)^2*arctanh(1/2*(-cos(d*x+c)+sin(d
*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-5*I*sec(d*x+c)^2*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(
d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))+20*I*cos(d*x+c)*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(
cos(d*x+c)+1))^(1/2))+20*I*cos(d*x+c)*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^
(1/2))+80*I*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+20*I*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/
(cos(d*x+c)+1))^(1/2))*sin(d*x+c)-20*sin(d*x+c)*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d
*x+c)+1))^(1/2))-10*tan(d*x+c)*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-
44*sec(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)-15*sec(d*x+c)*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/
(cos(d*x+c)+1))^(1/2)))

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 541, normalized size of antiderivative = 1.32 \[ \int \frac {(e \sec (c+d x))^{9/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {{\left (\sqrt {\frac {25 i \, e^{9}}{a^{5} d^{2}}} a^{3} d e^{\left (i \, d x + i \, c\right )} \log \left (\frac {2 \, {\left (\sqrt {\frac {25 i \, e^{9}}{a^{5} d^{2}}} a^{3} d + 5 \, {\left (e^{4} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{4}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}\right )}}{5 \, e^{4}}\right ) - \sqrt {\frac {25 i \, e^{9}}{a^{5} d^{2}}} a^{3} d e^{\left (i \, d x + i \, c\right )} \log \left (-\frac {2 \, {\left (\sqrt {\frac {25 i \, e^{9}}{a^{5} d^{2}}} a^{3} d - 5 \, {\left (e^{4} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{4}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}\right )}}{5 \, e^{4}}\right ) - \sqrt {-\frac {25 i \, e^{9}}{a^{5} d^{2}}} a^{3} d e^{\left (i \, d x + i \, c\right )} \log \left (\frac {2 \, {\left (\sqrt {-\frac {25 i \, e^{9}}{a^{5} d^{2}}} a^{3} d + 5 \, {\left (e^{4} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{4}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}\right )}}{5 \, e^{4}}\right ) + \sqrt {-\frac {25 i \, e^{9}}{a^{5} d^{2}}} a^{3} d e^{\left (i \, d x + i \, c\right )} \log \left (-\frac {2 \, {\left (\sqrt {-\frac {25 i \, e^{9}}{a^{5} d^{2}}} a^{3} d - 5 \, {\left (e^{4} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{4}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}\right )}}{5 \, e^{4}}\right ) + 4 \, {\left (-5 i \, e^{4} e^{\left (2 i \, d x + 2 i \, c\right )} - 4 i \, e^{4}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{2 \, a^{3} d} \]

[In]

integrate((e*sec(d*x+c))^(9/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/2*(sqrt(25*I*e^9/(a^5*d^2))*a^3*d*e^(I*d*x + I*c)*log(2/5*(sqrt(25*I*e^9/(a^5*d^2))*a^3*d + 5*(e^4*e^(2*I*d
*x + 2*I*c) + e^4)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c)
)/e^4) - sqrt(25*I*e^9/(a^5*d^2))*a^3*d*e^(I*d*x + I*c)*log(-2/5*(sqrt(25*I*e^9/(a^5*d^2))*a^3*d - 5*(e^4*e^(2
*I*d*x + 2*I*c) + e^4)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*
I*c))/e^4) - sqrt(-25*I*e^9/(a^5*d^2))*a^3*d*e^(I*d*x + I*c)*log(2/5*(sqrt(-25*I*e^9/(a^5*d^2))*a^3*d + 5*(e^4
*e^(2*I*d*x + 2*I*c) + e^4)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x +
 1/2*I*c))/e^4) + sqrt(-25*I*e^9/(a^5*d^2))*a^3*d*e^(I*d*x + I*c)*log(-2/5*(sqrt(-25*I*e^9/(a^5*d^2))*a^3*d -
5*(e^4*e^(2*I*d*x + 2*I*c) + e^4)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I
*d*x + 1/2*I*c))/e^4) + 4*(-5*I*e^4*e^(2*I*d*x + 2*I*c) - 4*I*e^4)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e
^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))*e^(-I*d*x - I*c)/(a^3*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {(e \sec (c+d x))^{9/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((e*sec(d*x+c))**(9/2)/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 2449 vs. \(2 (307) = 614\).

Time = 0.92 (sec) , antiderivative size = 2449, normalized size of antiderivative = 5.96 \[ \int \frac {(e \sec (c+d x))^{9/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

[In]

integrate((e*sec(d*x+c))^(9/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

-(64*e^4*cos(1/2*d*x + 1/2*c)^2 + 64*e^4*sin(1/2*d*x + 1/2*c)^2 + 16*e^4 - 10*(-I*sqrt(2)*e^4*cos(3/2*d*x + 3/
2*c) - I*sqrt(2)*e^4*cos(1/2*d*x + 1/2*c) - sqrt(2)*e^4*sin(3/2*d*x + 3/2*c) + sqrt(2)*e^4*sin(1/2*d*x + 1/2*c
))*arctan2(sqrt(2)*sin(1/2*d*x + 1/2*c) + sin(d*x + c), sqrt(2)*cos(1/2*d*x + 1/2*c) + cos(d*x + c) + 1) - 10*
(I*sqrt(2)*e^4*cos(3/2*d*x + 3/2*c) + I*sqrt(2)*e^4*cos(1/2*d*x + 1/2*c) + sqrt(2)*e^4*sin(3/2*d*x + 3/2*c) -
sqrt(2)*e^4*sin(1/2*d*x + 1/2*c))*arctan2(-sqrt(2)*sin(1/2*d*x + 1/2*c) + sin(d*x + c), -sqrt(2)*cos(1/2*d*x +
 1/2*c) + cos(d*x + c) + 1) - (10*sqrt(2)*e^4*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1, sqrt(2)*sin(1/2*d*x +
1/2*c) + 1) + 10*sqrt(2)*e^4*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1, -sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 10
*sqrt(2)*e^4*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) - 1, sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 10*sqrt(2)*e^4*arct
an2(sqrt(2)*cos(1/2*d*x + 1/2*c) - 1, -sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) - 5*I*sqrt(2)*e^4*log(2*cos(1/2*d*x +
 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) +
5*I*sqrt(2)*e^4*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*s
qrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 5*I*sqrt(2)*e^4*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2
*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 5*I*sqrt(2)*e^4*log(2*cos(1/2*d*x + 1/2*
c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 64*e^
4*cos(1/2*d*x + 1/2*c) + 64*I*e^4*sin(1/2*d*x + 1/2*c))*cos(3/2*d*x + 3/2*c) - 5*(2*sqrt(2)*e^4*arctan2(sqrt(2
)*cos(1/2*d*x + 1/2*c) + 1, sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*sqrt(2)*e^4*arctan2(sqrt(2)*cos(1/2*d*x + 1/
2*c) + 1, -sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*sqrt(2)*e^4*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) - 1, sqrt(2)
*sin(1/2*d*x + 1/2*c) + 1) + 2*sqrt(2)*e^4*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) - 1, -sqrt(2)*sin(1/2*d*x + 1/
2*c) + 1) - I*sqrt(2)*e^4*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/
2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + I*sqrt(2)*e^4*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*
c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - I*sqrt(2)*e^4*log(2*cos(1/2*d*x
+ 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) +
 I*sqrt(2)*e^4*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sq
rt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(1/2*d*x + 1/2*c) - 5*(sqrt(2)*e^4*cos(3/2*d*x + 3/2*c) + sqrt(2)*e^4*cos(
1/2*d*x + 1/2*c) - I*sqrt(2)*e^4*sin(3/2*d*x + 3/2*c) + I*sqrt(2)*e^4*sin(1/2*d*x + 1/2*c))*log(2*sqrt(2)*sin(
d*x + c)*sin(1/2*d*x + 1/2*c) + 2*(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1)*cos(d*x + c) + cos(d*x + c)^2 + 2*cos(1/2
*d*x + 1/2*c)^2 + sin(d*x + c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 1) + 5*(sqrt(2)
*e^4*cos(3/2*d*x + 3/2*c) + sqrt(2)*e^4*cos(1/2*d*x + 1/2*c) - I*sqrt(2)*e^4*sin(3/2*d*x + 3/2*c) + I*sqrt(2)*
e^4*sin(1/2*d*x + 1/2*c))*log(-2*sqrt(2)*sin(d*x + c)*sin(1/2*d*x + 1/2*c) - 2*(sqrt(2)*cos(1/2*d*x + 1/2*c) -
 1)*cos(d*x + c) + cos(d*x + c)^2 + 2*cos(1/2*d*x + 1/2*c)^2 + sin(d*x + c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*s
qrt(2)*cos(1/2*d*x + 1/2*c) + 1) + (10*I*sqrt(2)*e^4*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1, sqrt(2)*sin(1/2
*d*x + 1/2*c) + 1) + 10*I*sqrt(2)*e^4*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1, -sqrt(2)*sin(1/2*d*x + 1/2*c)
+ 1) + 10*I*sqrt(2)*e^4*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) - 1, sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 10*I*sqr
t(2)*e^4*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) - 1, -sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 5*sqrt(2)*e^4*log(2*co
s(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2
*c) + 2) - 5*sqrt(2)*e^4*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2
*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 5*sqrt(2)*e^4*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c
)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 5*sqrt(2)*e^4*log(2*cos(1/2*d*x +
 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) -
64*I*e^4*cos(1/2*d*x + 1/2*c) - 64*e^4*sin(1/2*d*x + 1/2*c))*sin(3/2*d*x + 3/2*c) - 5*(2*I*sqrt(2)*e^4*arctan2
(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1, sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*I*sqrt(2)*e^4*arctan2(sqrt(2)*cos(1/2
*d*x + 1/2*c) + 1, -sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*I*sqrt(2)*e^4*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) -
 1, sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*I*sqrt(2)*e^4*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) - 1, -sqrt(2)*sin
(1/2*d*x + 1/2*c) + 1) + sqrt(2)*e^4*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1
/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*e^4*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d
*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + sqrt(2)*e^4*log(2*cos(1
/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c)
 + 2) - sqrt(2)*e^4*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) -
 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*sin(1/2*d*x + 1/2*c))*sqrt(a)*sqrt(e)/((8*I*a^3*cos(3/2*d*x + 3/2*c) + 8
*I*a^3*cos(1/2*d*x + 1/2*c) + 8*a^3*sin(3/2*d*x + 3/2*c) - 8*a^3*sin(1/2*d*x + 1/2*c))*d)

Giac [F]

\[ \int \frac {(e \sec (c+d x))^{9/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int { \frac {\left (e \sec \left (d x + c\right )\right )^{\frac {9}{2}}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((e*sec(d*x+c))^(9/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((e*sec(d*x + c))^(9/2)/(I*a*tan(d*x + c) + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(e \sec (c+d x))^{9/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{9/2}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}} \,d x \]

[In]

int((e/cos(c + d*x))^(9/2)/(a + a*tan(c + d*x)*1i)^(5/2),x)

[Out]

int((e/cos(c + d*x))^(9/2)/(a + a*tan(c + d*x)*1i)^(5/2), x)